213 research outputs found

    Detergent and sanitizer stresses decrease the thermal resistance of Enterobacter sakazakii in infant milk formula

    Get PDF
    Infant milk formula has been identified as a potential source of Enterobacter sakazakii. This bacterium can cause a severe form of neonatal meningitis and necrotizing entercolitis. This study determined the effect of acid, alkaline, chlorine and ethanol stresses on the thermal inactivation of E. sakazakii in infant milk formula. Stressed cells were mixed with reconstituted powdered infant milk formula (PIMF) at temperatures between 52 and 58°C for various time periods or mixed with PFMF prior to reconstitution with water at temperatures between 50 and 100°C. The D- and z-values of the cells were determined using linear regression analysis. Detergent and sanitizer stresses decreased the thermal resistance of E. sakazakii in powdered and reconstituted infant milk formula. The values for Z)- acid, alkaline, chlorine and ethanol stressed E. sakazakii at 52-58°C were 14.57-0.54, 12.07-0.37, 10.08-0.40 and 11.61-0.50 min, respectively. The values of alkaline, chlorine and ethanol stressed cells were significantly lower than those of unstressed cells. Only the z-value (4.4°C) of ethanol stressed E. sakazakii was significantly different than that of unstressed cells (4.12°C). Reconstitution at 60°C did not significantly reduce the number of pre-stressed E. sakazakii cells compared with unstressed control cells, whereas significant decreases were obtained at 70°C. Using water at 70°C during the preparation of reconstituted PIMF before feeding infants, may be a suitable and applicable means of reducing the risk of E. sakazakii in the formula. The results of this study may be of use to regulatory agencies, infant milk producers and infant caregivers to design heating processes to eliminate E. sakazakii that may be present in infant milk formula

    Detection of curved lines with B-COSFIRE filters: A case study on crack delineation

    Full text link
    The detection of curvilinear structures is an important step for various computer vision applications, ranging from medical image analysis for segmentation of blood vessels, to remote sensing for the identification of roads and rivers, and to biometrics and robotics, among others. %The visual system of the brain has remarkable abilities to detect curvilinear structures in noisy images. This is a nontrivial task especially for the detection of thin or incomplete curvilinear structures surrounded with noise. We propose a general purpose curvilinear structure detector that uses the brain-inspired trainable B-COSFIRE filters. It consists of four main steps, namely nonlinear filtering with B-COSFIRE, thinning with non-maximum suppression, hysteresis thresholding and morphological closing. We demonstrate its effectiveness on a data set of noisy images with cracked pavements, where we achieve state-of-the-art results (F-measure=0.865). The proposed method can be employed in any computer vision methodology that requires the delineation of curvilinear and elongated structures.Comment: Accepted at Computer Analysis of Images and Patterns (CAIP) 201

    Psychosocial correlates of physical activity in school children aged 8-10 years

    Get PDF
    Background: Understanding correlates of physical activity (PA) among children in different populations may contribute to fostering active lifestyles. This study considered gender differences in relationships between biologic (body mass index, BMI), demographic (socioeconomic sport status, SES) and psychosocial correlates of PA and level of PA in Portuguese primary school children. Methods: 683 children, aged 8–10 years, from 20 different elementary schools in northern Portugal were surveyed. Weight status was classified using International Obesity Task Force (IOTF) criteria for the BMI. Family SES was estimated from school records. PA level and psychosocial correlates (attraction to PA, perceived physical competence and parental socialization) were obtained with interview and standardized questionnaires, respectively. Sex-specific hierarchical multiple regression analyses (SPSS 18.0) were conducted and included two blocks of predictor variables (biologic and demographic, and psychosocial). Results: Level of PA was significantly higher in boys than girls. Enjoyment of participation in vigorous PA was positively associated with level of PA. Perceived acceptance by peers in games and sports and parental encouragement were positively and significantly related to PA in girls. Perceived physical competence was positively and significantly related to PA in boys. Weight status and SES were not associated with PA. Conclusions: Boys and girls differed in perceived attractiveness of PA and perceived physical competence, both of which influenced level of PA. Differences in perceptions may be important aspects of motivation for PA in school children

    Giant magnetic-field-induced strain in Ni2MnGa-based polycrystal

    Get PDF
    Ferromagnetic Ni2MnGa-based alloys play an important role in technological fields, such as smart actuators, magnetic refrigeration and robotics. The possibility of obtaining large non-contact deformation induced by an external perturbation is one of its key strengths for applications. However, the search for materials with low cost, practical fabrication procedures and large signal output under small perturbing fields still poses challenges. In the present study we demonstrate that by judicial choice of substitution on the Mn site, an abrupt magnetostructural transition from a paramagnetic austenite phase to a ferromagnetic martensite one can be tuned to close to room temperature achieving large and reproducible strains. The required magnetic field to induce the strain varies from small values, as low as 0.25 T for 297.4 K and 1.6% of strain, to 8 T for 305 K and 2.6% of strain. Our findings point to encouraging possibilities for application of shape memory alloys in relatively inexpensive, scalable polycrystalline materials

    Wide spectrum of NR5A1-related phenotypes in 46,XY and 46,XX individuals

    Get PDF
    Steroidogenic factor 1 (NR5A1, SF-1, Ad4BP) is a transcriptional regulator of genes involved in adrenal and gonadal development and function. Mutations in NR5A1 have been among the most frequently identified genetic causes of gonadal development disorders and are associated with a wide phenotypic spectrum. In 46,XY individuals, NR5A1-related phenotypes may range from disorders of sex development (DSD) to oligo/azoospermia, and in 46,XX individuals, from 46,XX ovotesticular and testicular DSD to primary ovarian insufficiency (POI). The most common 46,XY phenotype is atypical or female external genitalia with clitoromegaly, palpable gonads, and absence of Müllerian derivatives. Notably, an undervirilized external genitalia is frequently seen at birth, while spontaneous virilization may occur later, at puberty. In 46,XX individuals, NR5A1 mutations are a rare genetic cause of POI, manifesting as primary or secondary amenorrhea, infertility, hypoestrogenism, and elevated gonadotropin levels. Mothers and sisters of 46,XY DSD patients carrying heterozygous NR5A1 mutations may develop POI, and therefore require appropriate counseling. Moreover, the recurrent heterozygous p.Arg92Trp NR5A1 mutation is associated with variable degrees of testis development in 46,XX patients. A clear genotype-phenotype correlation is not seen in patients bearing NR5A1 mutations, suggesting that genetic modifiers, such as pathogenic variants in other testis/ovarian-determining genes, may contribute to the phenotypic expression. Here, we review the published literature on NR5A1-related disease, and discuss our findings at a single tertiary center in Brazil, including ten novel NR5A1 mutations identified in 46,XY DSD patients. The ever-expanding phenotypic range associated with NR5A1 variants in XY and XX individuals confirms its pivotal role in reproductive biology, and should alert clinicians to the possibility of NR5A1 defects in a variety of phenotypes presenting with gonadal dysfunction

    Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds

    Get PDF
    As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model

    Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    Get PDF
    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders

    A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans

    Get PDF
    In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA
    • …
    corecore